Fast low-level methods for sorting and ordering. The ..sortorder
methods do sorting and ordering at once, which requires more RAM
than ordering but is (almost) as fast as as sorting.
Usage
# S3 method for class 'integer64'
shellsort(x, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...)
# S3 method for class 'integer64'
shellsortorder(x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...)
# S3 method for class 'integer64'
shellorder(x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...)
# S3 method for class 'integer64'
mergesort(x, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...)
# S3 method for class 'integer64'
mergeorder(x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...)
# S3 method for class 'integer64'
mergesortorder(x, i, has.na = TRUE, na.last = FALSE, decreasing = FALSE, ...)
# S3 method for class 'integer64'
quicksort(
x,
has.na = TRUE,
na.last = FALSE,
decreasing = FALSE,
restlevel = floor(1.5 * log2(length(x))),
...
)
# S3 method for class 'integer64'
quicksortorder(
x,
i,
has.na = TRUE,
na.last = FALSE,
decreasing = FALSE,
restlevel = floor(1.5 * log2(length(x))),
...
)
# S3 method for class 'integer64'
quickorder(
x,
i,
has.na = TRUE,
na.last = FALSE,
decreasing = FALSE,
restlevel = floor(1.5 * log2(length(x))),
...
)
# S3 method for class 'integer64'
radixsort(
x,
has.na = TRUE,
na.last = FALSE,
decreasing = FALSE,
radixbits = 8L,
...
)
# S3 method for class 'integer64'
radixsortorder(
x,
i,
has.na = TRUE,
na.last = FALSE,
decreasing = FALSE,
radixbits = 8L,
...
)
# S3 method for class 'integer64'
radixorder(
x,
i,
has.na = TRUE,
na.last = FALSE,
decreasing = FALSE,
radixbits = 8L,
...
)
# S3 method for class 'integer64'
ramsort(
x,
has.na = TRUE,
na.last = FALSE,
decreasing = FALSE,
stable = TRUE,
optimize = c("time", "memory"),
VERBOSE = FALSE,
...
)
# S3 method for class 'integer64'
ramsortorder(
x,
i,
has.na = TRUE,
na.last = FALSE,
decreasing = FALSE,
stable = TRUE,
optimize = c("time", "memory"),
VERBOSE = FALSE,
...
)
# S3 method for class 'integer64'
ramorder(
x,
i,
has.na = TRUE,
na.last = FALSE,
decreasing = FALSE,
stable = TRUE,
optimize = c("time", "memory"),
VERBOSE = FALSE,
...
)
Arguments
- x
a vector to be sorted by
ramsort.integer64()
andramsortorder.integer64()
, i.e. the output ofsort.integer64()
- has.na
boolean scalar defining whether the input vector might contain
NA
s. If we know we don't have NAs, this may speed-up. Note that you risk a crash if there are unexpectedNA
s withhas.na=FALSE
- na.last
boolean scalar telling ramsort whether to sort
NA
s last or first. Note that 'boolean' means that there is no third optionNA
as insort()
- decreasing
boolean scalar telling ramsort whether to sort increasing or decreasing
- ...
further arguments, passed from generics, ignored in methods
- i
integer positions to be modified by
ramorder.integer64()
andramsortorder.integer64()
, default is 1:n, in this case the output is similar toorder.integer64()
- restlevel
number of remaining recursionlevels before
quicksort
switches from recursing toshellsort
- radixbits
size of radix in bits
- stable
boolean scalar defining whether stable sorting is needed. Allowing non-stable may speed-up.
- optimize
by default ramsort optimizes for 'time' which requires more RAM, set to 'memory' to minimize RAM requirements and sacrifice speed
- VERBOSE
cat some info about chosen method
Details
See bit::ramsort()
Note
Note that these methods purposely violate the functional programming
paradigm: they are called for the side-effect of changing some of
their arguments. The sort
-methods change x
, the order
-methods
change i
, and the sortoder
-methods change both x
and i
See also
bit::ramsort()
for the generic, ramsort.default
for the methods
provided by package ff, sort.integer64()
for the sort interface and
sortcache()
for caching the work of sorting
Examples
x <- as.integer64(sample(c(rep(NA, 9), 1:9), 32, TRUE))
x
#> integer64
#> [1] <NA> 5 <NA> 5 <NA> <NA> 2 8 3 <NA> 3 5 <NA> <NA>
#> [15] 4 8 7 <NA> 2 4 <NA> 9 8 6 3 1 2 <NA>
#> [29] <NA> <NA> 8 8
message("ramsort example")
#> ramsort example
s <- clone(x)
ramsort(s)
#> [1] 12
message("s has been changed in-place - whether or not ramsort uses an in-place algorithm")
#> s has been changed in-place - whether or not ramsort uses an in-place algorithm
s
#> integer64
#> [1] <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> 1 2
#> [15] 2 2 3 3 3 4 4 5 5 5 6 7 8 8
#> [29] 8 8 8 9
message("ramorder example")
#> ramorder example
s <- clone(x)
o <- seq_along(s)
ramorder(s, o)
#> [1] 12
message("o has been changed in-place - s remains unchanged")
#> o has been changed in-place - s remains unchanged
s
#> integer64
#> [1] <NA> 5 <NA> 5 <NA> <NA> 2 8 3 <NA> 3 5 <NA> <NA>
#> [15] 4 8 7 <NA> 2 4 <NA> 9 8 6 3 1 2 <NA>
#> [29] <NA> <NA> 8 8
o
#> [1] 1 3 5 6 10 13 14 18 21 28 29 30 26 7 19 27 9 11 25 15 20 2 4
#> [24] 12 24 17 8 16 23 31 32 22
s[o]
#> integer64
#> [1] <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> 1 2
#> [15] 2 2 3 3 3 4 4 5 5 5 6 7 8 8
#> [29] 8 8 8 9
message("ramsortorder example")
#> ramsortorder example
o <- seq_along(s)
ramsortorder(s, o)
#> [1] 12
message("s and o have both been changed in-place - this is much faster")
#> s and o have both been changed in-place - this is much faster
s
#> integer64
#> [1] <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> <NA> 1 2
#> [15] 2 2 3 3 3 4 4 5 5 5 6 7 8 8
#> [29] 8 8 8 9
o
#> [1] 1 3 5 6 10 13 14 18 21 28 29 30 26 7 19 27 9 11 25 15 20 2 4
#> [24] 12 24 17 8 16 23 31 32 22